\\\\(
\nonumber
\newcommand{\bevisslut}{$\blacksquare$}
\newenvironment{matr}[1]{\hspace{-.8mm}\begin{bmatrix}\hspace{-1mm}\begin{array}{#1}}{\end{array}\hspace{-1mm}\end{bmatrix}\hspace{-.8mm}}
\newcommand{\transp}{\hspace{-.6mm}^{\top}}
\newcommand{\maengde}[2]{\left\lbrace \hspace{-1mm} \begin{array}{c|c} #1 & #2 \end{array} \hspace{-1mm} \right\rbrace}
\newenvironment{eqnalign}[1]{\begin{equation}\begin{array}{#1}}{\end{array}\end{equation}}
\newcommand{\eqnl}{}
\newcommand{\matind}[3]{{_\mathrm{#1}\mathbf{#2}_\mathrm{#3}}}
\newcommand{\vekind}[2]{{_\mathrm{#1}\mathbf{#2}}}
\newcommand{\jac}[2]{{\mathrm{Jacobi}_\mathbf{#1} (#2)}}
\newcommand{\diver}[2]{{\mathrm{div}\mathbf{#1} (#2)}}
\newcommand{\rot}[1]{{\mathbf{rot}\mathbf{(#1)}}}
\newcommand{\am}{\mathrm{am}}
\newcommand{\gm}{\mathrm{gm}}
\newcommand{\E}{\mathrm{E}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\mU}{\mathbf{U}}
\newcommand{\mA}{\mathbf{A}}
\newcommand{\mB}{\mathbf{B}}
\newcommand{\mC}{\mathbf{C}}
\newcommand{\mD}{\mathbf{D}}
\newcommand{\mE}{\mathbf{E}}
\newcommand{\mF}{\mathbf{F}}
\newcommand{\mK}{\mathbf{K}}
\newcommand{\mI}{\mathbf{I}}
\newcommand{\mM}{\mathbf{M}}
\newcommand{\mN}{\mathbf{N}}
\newcommand{\mQ}{\mathbf{Q}}
\newcommand{\mT}{\mathbf{T}}
\newcommand{\mV}{\mathbf{V}}
\newcommand{\mW}{\mathbf{W}}
\newcommand{\mX}{\mathbf{X}}
\newcommand{\ma}{\mathbf{a}}
\newcommand{\mb}{\mathbf{b}}
\newcommand{\mc}{\mathbf{c}}
\newcommand{\md}{\mathbf{d}}
\newcommand{\me}{\mathbf{e}}
\newcommand{\mn}{\mathbf{n}}
\newcommand{\mr}{\mathbf{r}}
\newcommand{\mv}{\mathbf{v}}
\newcommand{\mw}{\mathbf{w}}
\newcommand{\mx}{\mathbf{x}}
\newcommand{\mxb}{\mathbf{x_{bet}}}
\newcommand{\my}{\mathbf{y}}
\newcommand{\mz}{\mathbf{z}}
\newcommand{\reel}{\mathbb{R}}
\newcommand{\mL}{\bm{\Lambda}}
\newcommand{\mnul}{\mathbf{0}}
\newcommand{\trap}[1]{\mathrm{trap}(#1)}
\newcommand{\Det}{\operatorname{Det}}
\newcommand{\adj}{\operatorname{adj}}
\newcommand{\Ar}{\operatorname{Areal}}
\newcommand{\Vol}{\operatorname{Vol}}
\newcommand{\Rum}{\operatorname{Rum}}
\newcommand{\diag}{\operatorname{\bf{diag}}}
\newcommand{\bidiag}{\operatorname{\bf{bidiag}}}
\newcommand{\spanVec}[1]{\mathrm{span}{#1}}
\newcommand{\Div}{\operatorname{Div}}
\newcommand{\Rot}{\operatorname{\mathbf{Rot}}}
\newcommand{\Jac}{\operatorname{Jacobi}}
\newcommand{\Tan}{\operatorname{Tan}}
\newcommand{\Ort}{\operatorname{Ort}}
\newcommand{\Flux}{\operatorname{Flux}}
\newcommand{\Cmass}{\operatorname{Cm}}
\newcommand{\Imom}{\operatorname{Im}}
\newcommand{\Pmom}{\operatorname{Pm}}
\newcommand{\IS}{\operatorname{I}}
\newcommand{\IIS}{\operatorname{II}}
\newcommand{\IIIS}{\operatorname{III}}
\newcommand{\Le}{\operatorname{L}}
\newcommand{\app}{\operatorname{app}}
\newcommand{\M}{\operatorname{M}}
\newcommand{\re}{\mathrm{Re}}
\newcommand{\im}{\mathrm{Im}}
\newcommand{\compl}{\mathbb{C}}
\newcommand{\e}{\mathrm{e}}
\\\\)
Opg 1: Elementære udregninger
Der er givet fire matricer
$$\mA=\begin{matr}{rrr} -1&0&5\newline 2&-1&5\newline 0&2&-1 \end{matr}\,,\,\,
\mB=\begin{matr}{rr} 2&1\newline 0&0\newline 1&-2\end{matr}\,,\,\,
\mC=\begin{matr}{rrr} 4&0&3\newline 1&-2&3\end{matr}\,\,\,\mathrm{og}\,\,\,
\mD=\begin{matr}{rrr} 1&1&0\newline 1&-1&0\newline 2&1&-2 \end{matr}\,.$$
A
Udregn $\,4\mathbf C\,$ og $-\mathbf C\,.$
B
Udregn $\,\mathbf A+\mathbf D\,$ og $\,3\mathbf A-2\mathbf D\,.$
C
Udregn $\,-2\mathbf B+3\mathbf B\,\,.$
Opg 2: Matrixprodukter
Der er givet matricerne
$$\mathbf A=\begin{matr}{rr} 2&1\newline 0&3\newline 1&-2\end{matr}\,,\,\,
\mathbf B=\begin{matr}{rrr} 4&0&3\newline 1&-2&3\end{matr}\,\,\,\mathrm{og}\,\,\,\mC=\begin{matr}{rrr} 1&1&0\newline 1&-1&0\newline 2&1&-2 \end{matr}\,$$
samt de to vektorer
$$\mathbf u= \begin{matr}{r} 1\newline -2\newline -1\end{matr}\,\,\,\mathrm{og}\,\,\,\mathbf v= \begin{matr}{r} 1\newline 2\end{matr}\,.$$
A
Udregn matrix-vektorprodukterne $\,\mA\mv\,$ og $\,\mB\mathbf u\,.$
Show answer
$\begin{matr}{r} 4\newline 6\newline -3\end{matr}\,$ og $\begin{matr}{r} 1\newline 2\end{matr}\,$
B
Hvilken form forventer du at matrix-matrixprodukterne $\,\mA\mB\,$ og $\,\mB\mathbf A\,$ har? Udregn dem!
Show answer
$\begin{matr}{rrr} 9&-2&9\newline 3&-6&9\newline 2&4&-3\end{matr}\,$ og $\begin{matr}{rr} 11&-2\newline 5&-11\end{matr}\,.$
Opg 3: Kvadratiske matricer
Der er givet to matricer $\,\mathbf A=\begin{matr}{rr} 1&0\newline 3&2\end{matr}\,$ og $\,\mathbf B=\begin{matr}{rr} -1&4\newline 1&-2\end{matr}\,$ samt enhedsmatricen $\,\mathbf E=\begin{matr}{rr} 1&0\newline 0&1\end{matr}\,.$
A
Find produkterne $\,\mA\mathbf E\,$ og $\,\mB\mathbf E\,.$
Show hint
Du behøver ikke lave udregninger. Hvorfor?
B
Udregn produkterne $\,\mA\mathbf B\,$ og $\,\mB\mathbf A\,$ og kommentér!
Show hint
Opfylder matrix-matrix produkt den kommutative lov ?
Opg 4: Determinanter
Givet matricerne
$$\mathbf A=\begin{matr}{rr} -3&-2\newline 5&4\end{matr}\,,\,\,\mathbf B=\begin{matr}{rrr} 1&2&3\newline 4&5&6\newline 7&8&9\end{matr}\,\,\,\mathrm{og}\,\,\,\mC=\begin{matr}{rrrr} 1 & 0 & 1 & 1 \newline 0 & 2 & 2 & 4 \newline 1 & 1 & 0 & 0 \newline 1 & 1 & 2 & 0 \end{matr}\,.$$
A
Udregn det$(\mA)\,$ og det$(\mB)\,$ ved håndregning, og det$(\mC)\,$ med dit matematikværktøj.
Show answer
$-2\,,\,\,0\,$ og $\,12\,.$
B
Prøv med dit matematikværktøj at finde den inverse matrix til hver af de tre matricer.
Opg 5: Inverse matricer
Givet matricerne
$$
\mA = \begin{matr}{rr} 2 & 3 \newline 1 & 1 \end{matr} \, , \quad \mB = \begin{matr}{rr} 1 & 0 \newline 4 & 1 \end{matr} \, , \quad \mC = \begin{matr}{rr} -1 & 3 \newline 1 & -2 \end{matr} \quad \mathrm{og} \quad \mD = \begin{matr}{rr} 1 & 0 \newline -4 & 1 \end{matr}\,.$$
A
Find determinanterne af $\,\mA\,$ og $\,\mB\,$ og gør rede for at de begge har en invers matrix.
B
Udregn $\,\mA\mC\,$ og $\,\mB\mD \,$ og kommentér!
Show answer
\begin{equation}
\mA\mC = \begin{matr}{rr} 1 & 0 \newline 0 & 1 \end{matr},\,\,
\mB\mD = \begin{matr}{rr} 1 & 0 \newline 0 & 1 \end{matr}\,.
\end{equation}
C
Find $ \mA^{-1} $ og $ \mB^{-1} \,$ uden at lave nye beregninger!
Show answer
$\mA^{-1} = \mC$ , idet $\mA\mC=\mE$ og $\mB^{-1} = \mD$ , idet $\mB\mD=\mE$ .
Opg 6: En matrixligning løst med invers matrix
Info: Hvis en $\,2\times 2\,$ matrix $\,\mA = \begin{matr}{rr} a & b \newline c & d \end{matr} \,$ har en invers matrix, kan den inverse matrix findes ved formlen:
$$
\mA^{-1} = \frac 1{\mathrm{det}(\mA)}\,\begin{matr}{rr} d & -b \newline -c & a \end{matr}\,.$$
Der er givet matricerne
$$ \mA = \begin{matr}{rr} 2 & 1 \newline 1 & 1 \end{matr}\,\,\,\mathrm{og}\,\,\,\mB = \begin{matr}{rr} 1 & 0 \newline 2 & -2 \end{matr} \,.$$
A
Find $ \mA^{-1} $ og løs matrixligningen $\,\mA\mathbf X=\mB\,.$
Show answer
$\mA^{-1} = \begin{matr}{rr} 1 & -1 \newline -1 & 2 \end{matr}\,$ og $\,\mathbf X =\begin{matr}{rr} -1 & 2 \newline 3 & -4 \end{matr}\,.$
B
Tjek resultaterne med dit matematikværktøj.